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Numerically Efficient Analysis of
Planar Microstrip Configurations
Using Closed-Form Green’s Functions

Ikmo Park, Raj Mittra, Fellow, IEEE, and M. 1. Aksun

Abstract— An efficient technique for the analysis of a general
class of microstrip structures with a substrate and a superstrate
is investigated in this paper using newly-derived closed-form
spatial domain Green’s functions employed in conjunction with
the Method of Moments (MoM). The computed current distri-
butions on the microstrip structure are used to determine the
scattering parameters of microstrip discontinuities and the input
impedances of microstrip patch antennas. It is shown that the
use of the closed-form Green’s functions in the context of the
MoM provides a computational advantage in terms of the CPU
time by almost two orders of magnitude over the conventional
spectral domain approach employing the transformed version of
the Green’s functions.

I. INTRODUCTION

ECENT advances in packaging technology of microwave

and millimeter wave integrated circuits (MMICs) have
engendered a considerable amount of interest in the devel-
opment of computer-aided design tools for these packages.
A variety of approximate techniques, e.g., the quasi-static
methods [1]-[3], equivalent waveguide models [4], [5], and
segmentation approaches [6], [7], have been employed for the
purpose of analyzing MMIC circuits. Although numerically
efficient, these techniques do not always provide results that
are sufficiently accurate. An alternative is to use a more
sophisticated technique, such as the full-wave Method of
Moments (MoM), which is versatile and accurate, though
highly computer-intensive.

In analyzing planar microstrip structures, the method of
moments (MoM) can be applied either in the spectral domain
[8]1-[12], or in the spatial domain [13]-[17]. The spatial
domain approach has the advantage that, in this method,
the integrands for the MoM matrix elements need to be
evaluated only over the finite support associated with the basis
and testing functions, as opposed to over an infinite range
required in its spectral domain counterpart [18]. However, in
the conventional form of the spatial domain approach, the
Green’s functions for the microstrip structures involve the
evaluation of the Sommerfeld integrals, whose integrands are
highly oscillatory and slowly decaying functions; hence their

Manuscript received April 9, 1993; revised May 2, 1994,

I. Park and R. Mittra are with the Electromagnetic Communication Lab-
oratory, Department of Electrical and Computer Engineering, University of
Illinois at Urbana-Champaign, Urbana, IL 61801-2991 USA

M. Aksun is with the Department of Electrical and Electronic Engineering,
Bilkent University, Ankara, Turkey.

IEEE Log Number 9407292,

computation is very time consuming. However, it has recently
been demonstrated in [19]-{21] that this problem can be obvi-
ated by using the newly-developed closed-form spatial domain
Green’s functions. The closed-form Green’s function can be
obtained by using a technique detailed in [22]. In this technique
we extract the quasi-static images and the surface wave poles
from the integrand of the Sommerfeld integral, and then handle
their contributions analytically using the Sommerfeld identity
and the residue theorem, respectively. Next, we approximate
the remaining integrand in terms of a finite number of complex
exponentials using the Generalized Pencil of Function (GPOF)
[23] method. The objective of this paper is to employ these
closed-form Green’s functions to analyze general microstrip
structures using the MoM approach.

The organization of the paper is as follows. Section II begins
with the formulation of the problem in the context of MoM,
and then goes on to present the scattering parameter analysis
based upon the Generalized Eigenvalue Method. A number of
microstrip discontinuities and patch antenna configurations, in-
cluding patches with tuning stubs, are numerically analyzed in
Section III, and the results are compared with those published
previously in the literature.

II. FORMULATION OF THE PROBLEM

The geometry of a general microstrip structure with a
substrate and a superstrate is shown in Fig. 1. The substrate
has a thickness of d,_; and a relative permittivity of ;1. The
superstrate thickness is d, and its relative permittivity is &,;.
The substrate, superstrate, and the ground plane are assumed
to be infinitely wide in the horizontal plane, and the conductors
are assumed to be lossless and infinitesimally thin. The time
convention is e*?,

The tangential components of the electric field on the plane
of the patch can be written in terms of the surface current
density, J, and the Green’s functions for the vector and scalar
potentials, G4 and G|, respectively, as follows

o 10
Ex:—]wGA”*JJc—I-}Z%(Gq*V-J) (1a)

. 10
where * denotes convolution. G%* represents the z-directed
vector potential at r due to an z-directed electric dipole of unit
strength located at r/, while G, represents the scalar potential
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Fig. 1. A general microstrip structure with a substrate and a superstrate.
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Fig. 2. Basis functions representing the current density on the microstrip
patch.

produced by a unit point charge associated with a horizontal
electric dipole (HED). The Green’s functions appearing in
(1) have algebraic singularitics of the first order, i.e., G ~
O(1/|r — r'}). Hence, they are better suited for numerical
computation than the Green’s functions for the electric field
integral equation which have algebraic singularities of the third
order, viz., O(1/|r — r'|?).

A. Application of the Method of Moments

To solve for the surface current density on the patch using
the MoM, the first step is to express the surface current density
as a linear combination of the basis functions, which are
chosen in this work to be rooftops (see Fig. 2). The z- and
y-components of the current density are expressed as:

ZZI"’"J"’”(:I; y) + Js(z,y)
Zzlnmjnm

where J7'™ and J;”” are the rooftop functions, J, is the basis
function for the current source, I7™ and [;™ are the unknown
coefficients of the basis functions at the (2, m)th position on
the subdivided microstrip patch.

Substituting (2) into (1) and testing by applying the
Galerkin’s procedure, the matrix equations for the unknown

(z,y) = (2a)

(z,y) = (2b)

coefficients of the basis functions can be obtained as
n’m’ ,;nm n'm’ nm ")
st | P I
m ,nm n m ,nm
Zy:c Zyy [y Vy A

where

Zpmem = {<J"'m’,G” € J2)

1 n’m' 0 nm
nm ,nm P 1 a nm 8 nm V
zz, =-= <8—J , Gy *a—J > (4b)
’ ! 1 a a
Znmo,nm _ n'm’ nm
. -——<——8 J , Gy * F gy > (40)
Z;Lym nm ;l m’ GyAy % J;Lm>

1 a 0
- nm nm 4
% <ay] Ca* gty >} @D

yr'm —<J n'm! “*J>

1 3 n'm’ a A ‘
+E<%Jz ,Gq*%n]s> (46)
n'm’ _ 1 4 n'm’ 9
Vy <8yJ ; G *é_‘]> (41)

where Z;”;cm""m denotes the mutual impedance between the
(n/,m")th testing. function and the (n,m)th basis function,
and V,"'™ represents the excitation voltage at the (n/,m/)th
position of the element due to the current source.

Since the Green’s functions appearing inside the inner
product in (4) are available in closed-forms (See [18] for
complete expressions), it is useful to transfer the convolution
integrals involving the Green’s functions and basis functions to
the testing and basis functions instead, which can be chosen
such that the integrals can be carried out analytically. This
manipulation helps reduce the original fivefold integral to only
a double integral, and results in a substantial savings in the
computation time as a consequence.

The current densities at the load and source terminals,
whenever they are used, are modeled by the half-rooftop basis
functions. Although these basis functions have singularities
in their derivatives, they do not present a problem and are
handled according to the procedure given in [19]. The matrix
equation in (4) can not be solved uniquely for the coefficients
of the basis functions unless additional equations, obtained by
imposing the boundary conditions at the load terminals, are
added. They relate the coefficients of the load basis functions
to the remainder of the basis functions in terms of the complex
load impedances. For example, the additional equation at the
left end of the load terminal can be written as (see [19]-[21])

. Z11
1 + mhm'_— -
( iB Zon

where 3, and Zg; are the propagation constant and the char-
acteristic impedance of the line containing the load terminal,
respectively.

By using these additional equations in the matrix (4),
one can solve for the current distribution on the microstrip
structure.

212
ﬂa:zhm>1‘7]cV(—Ml—l) _ Ia]:\r(_Ml) =0 (5
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B. Scattering Parameter Analysis

Once the current distributions on the microstrip structure
have been found, the scattering parameters for general two
port network can be computed by the following method. First,
the line segments —1 and —2, containing port-1 and port-2,
respectively, are modeled as transmission lines with charac-
teristic impedances of Zj; and Zgy. Next, Port-1 is excited
and the current distributions on segment-1 and segment-2 are
computed. The transmission line is assumed to support only
one propagating mode, since the reference plane is chosen to
be sufficiently far away from the junction such that none of
the higher-order modes are significant at the reference planes.
For this model, the current distribution on segment-1 can be
expressed as

Iy () = Iy () + I (1)

= Ayre7 It Byl (6)

where A;1 and By are the coefficients for the incident and
reflected waves, respectively, and (3; is propagation constant
for the line segment-1. To determine the unknown coefficients,
Ay, By, and f; in (6), we employ the Generalized Eigen-
value Method [23], and impose the constraint that the number
of exponential terms representing the current distribution on
the transmission line is only two, and that the two exponents
are identical except for their sign difference. This procedure,
outlined above, allows us to compute the propagation constant
as well as the complex coefficients of the incident and reflected
currents in the line segment-1.

Moving next to segment-2, we write the current distribution
on it as :

I (t) = I () + I (1)

= Apie™ P2t 4 Byelf? N

where As; and Bsp are the coefficients for the incident and
reflected wave, respectively, and (3, is propagation constant
on segment-2. At the reference planes, (411, Bi1) and (A21,
Bo1) are equal to (Il+1, I7), and (I2+1, I5;), respectively.

The four S-parameters, characterizing the two-port network,
can be expressed as

Si1 LI, o 077l
S| _ |0 0 Iy If I ®
Sa It I, 0 o I,
Sao 0 o0 I}, I 7

which is the desired form we were seeking.

III. RESULTS AND DISCUSSION

In this section, we present some illustrative numerical results
for three microstrip configurations: (i) an open-ended mi-
crostrip; (ii) microstrip line with a right-angle bend; and, (iii)
microstrip line-fed patch antennas. The closed-form Green’s
functions used in this study are for general microstrip geome-
tries with a substrate and a superstrate of arbitrary thicknesses.
However, the dielectric constant of the superstrate is set to one
so that our results can be compared with published results for
the single layer cases.
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Fig. 3. Effective dielectric constant of an open microstrip line (€r;~1 = 9.7,

d;—1 = 1.27 mm, w = 1.219 mm).
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Fig. 4. Phase of the reflection coefficient of an open microstrip line
(Erim1 = 9.9, d;—1 = 0.635 mm, w = 0.6033 mm).

A. Microstrip Open-End

As a first example that illustrates the accuracy of the
method described in the last section, we consider the problem
of modeling the discontinuity presented by the open end
of a microstrip line. The following parameters are used for
the computation: the dielectric constant and thickness of the
substrate are €,,_1 = 9.7 and d;_; = 1.27 mm, respectively,
and the width of the microstrip line is w = 1.219 mm. The
effective dielectric constants are computed and compared in
Fig. 4 to the results given in [17] and with the measurement
results from [24] (with graph reading errors of less than 0.2%).
In this computation, the half-wavelength long microstrip line
was divided into 21 longitudinal segments. The computed
results agree with those published in [17] to within 1%, and
with the measured data published in [24] to within 2% when
the microstrip line is modeled with three transverse segments.
Unlike in the procedure described in [17], the difference be-
tween the effective dielectric. constants obtained by using one
and three transverse segments is very small (Iess than 0.7%) in
the present method. This indicates that reasonably good resuits
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Fig. 5. Scattering parameter S1; for the right-angled bend; (a) magnitude,

(b) phase (€r,—1 = 2.2, d,—1 = 0.7874 mm, w = hz = 2.4 mm).

can be obtained by using the procedure followed here without
explicitly incorporating the edge condition, which, according
to [25], requires approximately ten transverse segments for
accurate modeling.

To complete the demonstration of the numerical accuracy
of this method, the phase term of the reflection coefficient
is computed for a microstrip line of 0.6033 mm width. The
dielectric constant and thickness of the substrate are ¢,;_1 =
9.9 and d;_; = 0.635 mm, respectively. The numerical results
obtained with the present method are compared in Fig. 5 to the
computations presented in [17], and also to the measurements
in [26], with graph reading errors of less than 0.2%. For
numerical computations, the half-wavelength long microstrip
line is again divided into 21 longitudinal segments. The results
obtained by using only one transverse segment are seen to
compare very favorably with the measurements in [17], as
well as with the computed results given in [26].

B. Microstrip Line With Right Angle Bend

In the next example, we consider a microstrip discontinuity
problem, viz., a right-angled bend. The dielectric constant of
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Fig. 6. Scattering parameter So; for the right-angled bend; (a) magnitude,
(b) phase (e,,—1 = 2.2, d,—1 = 0.7874 mm, w = hz = 2.4 mm).

the medium and the thickness of the substrate are chosen
to be €,-1 = 2.2 and d,—; = 0.7874 mm, respectively.
The lengths of the segments are L1 = L2 = 55.2 mm and
their widths are w = h, = 2.4 mm. The location of the
current source is 4.8 mm from the left edge of segment-1.
The computed and measured scattering parameters for the
right-angled bend in a microstrip line are plotted in Figs. 5
and 6 as functions of frequency. The magnitude and phase
of S1; are compared with the quasi-static values and the
experimental results of Harms [27], and are shown in Fig. 5.
The results obtained with our method agree with the quasi-
static values, as well as with the experimental data (within the
measurement uncertainty) throughout the frequency range of
comparison. Fig. 6 shows that the magnitude of the computed
So1 agrees with the measured data to within approximately
0.08 dB, and its phase to within approximately 2 degrees
of the measured values. The scattering parameters obtained
by the present method have ripples since the characteristic
impedances of the line are calculated using an empirical
formula based on a quasi-static approach; these impedances,
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used as matched terminations at both ends, differ slightly from
the true characteristic impedance of the line.

C. Microstrip Line-Fed Patch Antenna

Next, to illustrate the versatility of our method we consider
a radiation type problem involving a microstrip patch antenna.
The input impedance of a square patch fed by a microstrip
line at the center of one edge is computed and compared with
published results. In this example, the dielectric constant and
thickness of the substrate are ¢,;,_1 = 2.55 and d;_; = 1.59
mm, respectively, the width w of the feed line is 4.47 mm
its length L = 116 mm. The dimensions of the square patch
are ¢ = b = 40.2 mm. The location of the source is 8.9
mm from the left edge of the feed line. The input impedance,
computed using the present method, is compared in Fig. 7 with
the experimental data given in Lo et al. [5], and the computed
results of Deshpande and Bailey [9]. It is evident that the
results obtained by using the present method are in excellent
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Fig. 8. (a) Geometry of a microstrip-line-fed patch antenna with a tuning

stub, (b) top view of the geometry in (a).

agreement with the experimental, as well as other computed
results over the frequency range of interest.

As a final example, we present the results of our inves-
tigation of a microstrip-line-fed patch antenna with a tuning
stub, shown in Fig. 8. Both the feed line and the tuning stub
are assumed to have open-ended terminations. These types of
configurations are particularly useful [28] for fine-tuning the
resonant frequency of a microstrip patch antenna by changing
the length of the tuning stub, and/or its location along the
radiating edges of the microstrip patch. In addition, patch
antennas can be designed to radiate a circularly-polarized wave
by making a judicious choice for the locations of the feed line
and the tuning stub. The following parameters are used for the
example given below, which illustrates the use of the tuning
stub in microstrip patch antenna design. The dielectric constant
of the medium and thickness of the substrate are £,;,_1 = 2.62
and d;_; = 0.794 mm, respectively; the length Ly of the feed
line is 35.2 mm and its width wq is 2.2 mm. The width of the
tuning stub is 2.2 mm and the dimensions of the square patch
are o = b = 28.6 mm. The location of the current source is
6.6 mm from the left edge of the feed line.

In the first study , the feed location is chosen at the center
of left edge of the patch and the location of the tuning
stub is moved from the top to the center of its right edge
(see Fig. 8(b)). The magnitudes of the current distribution on
the microstrip line-fed patch antenna, without and with the
tuning stub, are shown in Figs. 9 and 10, respectively. As
seen in Figs. 9(a) and 10(a), the z-components of the current
distribution remain essentially unaffected by the presence of
the tuning stub. However, Fig. 10(b) shows that the addition
of the tuning stub induces a cross-polarization (y) component
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Jx (A)

Jy (A)

Fig. 9. Magnitudes of the current distribution on the microstrip line fed patch
antenna (a) J.(x,y), (b) Jy(x,y). Freq. = 3.16 GHz, ¢ = b = 28.6 mm,
Dx =Dy =22mm, ¢, 1 = 2.62,d,—1 = 0.794 mm.

in the patch current and excites a new mode along y. This
leads us to conclude that both the (1, 0) and (0, 1) modes
can be excited simultaneously using a tuning stub. It should
now be evident that we can achieve circular polarization (CP)
by adjusting the length and location of the tuning stub until
the magnitudes of the z- and y-components become equal and
their relative phase shift becomes 90°. As is well known, the
impedance locus exhibits a cusp-like behavior on the Smith
Chart, as seen in Fig. 11, when the CP condition is achieved.

IV. CONCLUSION

In this paper, spatial domain closed-form Green’s functions
have been employed for the analysis of a general class of
microstrip structures. Numerical results for a uniform line, as
well the scattering parameter analysis for a microstrip line
with a right-angle bend have been found to agree well with
experimental results as well as with those published elsewhere.
The behavior of the input impedance of a microstrip-line-
fed patch antenna has been shown to agree closely with
that computed by using the MoM approach in the spectral
domain, which requires the computation of infinite integrals
and is computer intensive. The analysis of the above patch
antenna shows that the addition of a tuning stub is not only
provides a convenient way to achieve fine tuning of the
resonant frequency of the antenna, but is useful for achieving
circularly-polarized radiation from the antenna as well.

Tx (A)

Jy (A)

Fig. 10. Input impedance of the microstrip line center fed square patch
antenna witha tuning stub. fstart = 2.98 GHz, fstop = 3.30 GHz,
Df = 0.01 GHz, dts = 4.4 mm. (a) Lts = 2.2 mm, (b) Lts = 4.4 mm,
(c) Lts = 6.6 cm.

f(start)

Fig. 11. Magnitudes of the current distribution on the microstrip line fed
patch antenna with a tuning stub (a) Jz (=, y), (b) Jy (2, y). Freq = 3.16 GHz,
a=b=286mm, Dr = Dy =22mm, £,—-1 = 2.62,d,_1 = 0.794
mm, Lts = 8.8 mm.

The use of the closed-form spatial domain Green’s functions
in the MoM formulation significantly reduces the computa-
tion time in comparison to that needed in the conventional
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formulation carried out in the spectral domain. For instance,
in a numerical experiment with 40 roof-top basis functions, the
CPU time for the solution of the current distribution was on the
order of 1 min. on a DEC station 5100 when the closed-form
Green’s functions were employed, whereas 100-150 mins.
were required on the same workstation to solve the problem
using the spectral domain moment method in conjunction with
an acceleration technique.

We conclude that the method presented in this paper can
be used to accurately solve for the current distributions on a
variety of microstrip line geometries in less computation time
than many other MoM approaches.
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