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Numerically Efficient Analysis of

Planar Microstrip Configurations

Using Closed-Form Green’s Functions
lkrno Park, Raj Mittra, Fellow, IEEE, and M. I. Aksun

Abstract-An efficient technique for the analysis of a general

class of microstrip structures with a substrate and a superstrata

is investigated in this paper using newly-derived closed-form

spatial domain Green’s functions employed in conjunction with

the Method of Moments (MoM). The computed current distri-

butions on the microstrip structure are used to determine the
scattering parameters of microstrip discontinuities and the input
impedances of microstrip patch antennas. It is shown that the

use of the closed-form Green’s functions in the context of the
MoM provides a computational advantage in terms of the CPU
time by almost two orders of magnitude over the conventional
spectral domain approach employing the transformed version of

the Green’s functions.

I. INTRODUCTION

R ECENT advances in packaging technology of microwave

and millimeter wave integrated circuits (MMICS) have

engendered a considerable amount of interest in the devel-

opment of computer-aided design tools for these packages.

A variety of approximate techniques, e.g., the quasi-static

methods [ 1]–[3], equivalent waveguide models [4], [5], and

segmentation approaches [6], [7], have been employed for the

purpose of analyzing MMIC circuits. Although numerically

efficient, these techniques do not always provide results that

are sufficiently accurate. An alternative is to use a more

sophisticated technique, such as the full-wave Method of

Moments (MoM), which is versatile and accurate, though

highly computer-intensive.

In analyzing planar microstrip structures, the method of

moments (MoM) can be applied either in the spectral domain

[8]–[12], or in the spatial domain [13] -[17]. The spatial

domain approach has the advantage that, in this method,

the integrands for the MoM matrix elements need to be

evaluated only over the finite support associated with the basis

and testing functions, as opposed to over an infinite range

required in its spectral domain counterpart [18]. However, in

the conventional form of the spatial domain approach, the

Green’s functions for the microstrip structures involve the

evaluation of the Sommerfeld integrals, whose integrands are

highly oscillatory and slowly decaying functions; hence their
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computation is very time consuming. However, it has recently

been demonstrated in [19]–[21] that this problem can be obvi-

ated by using the newly-developed closed-form spatial domain

Green’s functions. The closed-form Green’s function can be

obtained by using a technique detailed in [22]. In this technique

we extract the quasi-static images and the surface wave poles

from the integrand of the Sommerfeld integral, and then handle

their contributions analytically using the Sommerfeld identity

and the residue theorem, respectively. Next, we approximate

the remaining integrand in terms of a finite number of complex

exponential using the Generalized Pencil of Function (GPOF)

[23] method. The objective of this paper is to employ these

closed-form Green’s functions to analyze general microstrip

structures using the MoM approach.

The organization of the paper is as follows. Section II begins

with the formulation of the problem in the context of MoM,

and then goes on to present the scattering parameter analysis

based upon the Generalized Eigenvalue Method. A number of

microstrip discontinuities and patch antenna configurations, in-

cluding patches with tuning stubs, are numerically analyzed in

Section III, and the results are compared with those published

previously in the literature.

II. FORMULATION OF THE PROBLEM

The geometry of a general microstrip structure with a

substrate and a superstrata is shown in Fig. 1. The substrate

has a thickness of ci–l and a relative permittivity of Sri– 1. The

superstrata thickness is d, and its relative permittivity is eri.

The substrate, superstrata, and the ground plane are assumed

to be infinitely wide in the horizontal plane, and the conductors

are assumed to be lossless and infinitesimally thin. The time

convention is e~”t.

The tangential components of the electric field on the plane

of the patch can be written in terms of the surface current

density, J, and the Green’s functions for the vector and scalar

potentials, GA and Gg, respectively, as follows

Ez=–jwG:z *Jz+&:(Gq*V. J) (la)

Ey = –jwG;y*JY+$; (G@J) (lb)

where * denotes convolution. G? represents the x-directed

vector potential at r due to an z-directed electric dipole of unit

strength located at r’, while Gg represents the scalar potential

0018–9480/95$04.00 @ 1995 IEEE
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Fig. 1. A general microstrip structure with a substrate and a superstrata,
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Fig. 2. Basis functions representing the current density on the rnicrostrip

patch.

produced by a unit point charge associated with a horizontal

electric dipole (HED). The Green’s functions appearing in

(1) have algebraic singularities of the first order, i.e., G N

0(1/ Ir – r’ 1). Hence, they are better suited for numerical

computation than the Green’s functions for the electric field

integral equation which have algebraic singularities of the third

order, viz., 0(1/\r – r’\3).

A. Application of the Method of Moments

To solve for the surface current density on the patch using

the MoM, the first step is to express the surface current density

as a linear combination of the basis functions, which are

chosen in this work to be rooftops (see Fig. 2). The $- and

y-components of the current density are expressed as:

nm

nm

(2b)

where J~m and J;m are the rooftop functions, Js is the basis

function for the current source, I:m and I~m are the unknown

coefficients of the basis functions at the (n, m)th position on

the subdivided microstrip patch.

Substituting (2) into (1) and testing by applying the
Galerkin’s procedure, the matrix equations for the unknown

coefficients of the basis functions can be obtained as

[

z~~m’ mm z:~m’ wm I~m

z;~m’,nm j.p.n.m’ ,nm
1[1;4 = ~!] (3,

where

~;~m’ ,nrn =
{(

nmJ:’m’ , G~ * Jz
)

1—

(

~ Jn’m’, Gq % ~J~m
7’ ax’z )}

(4a)

Zn’m’,n,m _ 1

~Y
(

~~ ~J~’m’,Gq ~ zJnm~y Y
)

(4b)

z;~m’ ,nm = 1——

(

~Jn’m’, Gq * $Jnm
~2 @ Y z

)
(4C)

t?
* — Jnm~y Y

)}

(4d)

(~.’m’ = – J~’m’, G? * J.
z )

(+$ ~J:’m’, Gq*~JS
)

(4e)

yrn’m’ = ~

Y
( )

_!J.’m’,Gq*~J. “

~2 /jg Y (4f)

where Z:~m’ ‘“m denotes the mutual impedance between the

(n’, m’)th testing. function and the (n, m)th basis function,

and V~’m’ represents the excitation voltage at the (n’, m’)tb

position of the element due to the current source.

Since the Green’s functions appearing inside the inner

product in (4) are available in closed-forms (See [18] for

complete expressions), it is useful to transfer the convolution

integrals involving the Green’s functions and basis functions to

the testing and basis functions instead, which can be chosen

such that the integrals can be carried out analytically. This

manipulation helps reduce the original fivefold integral to only

a double integral, and results in a substantial savings in the

computation time as a consequence.

The current densities at the load and source terminals,

whenever they are used, are modeled by the half-rooftop basis

functions. Although these basis functions have singularities

in their derivatives, they do not present a problem and are

handled according to the procedure given in [19]. The matrix

equation in (4) can not be solved uniquely for the coefficients

of the basis functions unless additional equations, obtained by

imposing the boundary conditions at the load terminals, are

added. They relate the coefficients of the load basis functions

to the remainder of the basis functions in terms of the complex

load impedances. For example, the additional equation at the

left end of the load terminal can be written as (see [19]-[21])

where ~Z and Zol are the propagation constant and the char-

acteristic impedance of the line containing the load terminal,

respectively.

By using these additional equations in the matrix (4),

one can solve for the current distribution on the microstrip

structure.
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B. Scattering Parameter Analysis

Once the current distributions on the microstrip structure

have been found, the scattering parameters for general two

port network can be computed by the following method. First,

the line segments – 1 and –2, containing port-1 and port-2,

respectively, are modeled as transmission lines with charac-

teristic impedances of ZOI and 202. Next, Port-1 is excited

and the current distributions on segment-1 and segment-2 are

computed. The transmission line is assumed to support only

one propagating mode, since the reference plane is chosen to

be sufficiently far away from the junction such that none of

the higher-order modes are significant at the reference planes.

For this model, the current distribution on segment-1 can be

expressed as

where All and B11 are the coefficients for the incident and

reflected waves, respectively, and @l is propagation constant

for the line segment- 1. To determine the unknown coefficients,

All, l?ll, and /31 in (6), we employ the Generalized Eigen-

value Method [23], and impose the constraint that the number

of exponential terms representing the current distribution on

the transmission line is only two, and that the two exponents

are identical except for their sign difference. This procedure,

outlined above, allows us to compute the propagation constant

as well as the complex coefficients of the incident and reflected

currents in the line segment-1.

Moving next to segment-2, we write the current distribution

on it as

121(t) = Q (t)+ Ifi (t)

=: A21e–~02t + B21e~p2t (7)

where A21 and B21 are the coefficients for the incident and

reflected wave, respectively, and /32 is propagation constant

on segment-2. At the reference planes, (AI 1, 13H ) and (AM,

&l) are equal to (1L, 1;), and (1L, 1;), respectively.
The four S-parameters, characterizing the two-port network,

can be expressed as

[1=[!i !1-1[1 ‘8)
which is the desired form we were seeking.

III. RESULTS AND DISCUSSION

In this section, we present some illustrative numerical results

for three microstrip configurations: (i) an open-ended mi-

crostrip; (ii) microstrip line with a right-angle bend; and, (iii)
microstrip line-fed patch antennas. The closed-form Green’s

functions used in this study are for general microstrip geome-

tries with a substrate and a superstrata of arbitrary thicknesses.

However, the dielectric constant of the superstrata is set to one

so that our results can be compared with published results for

the single layer cases.

7.3

7.1 — Present method
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Fiz 3. Effective dielectric constant of an open rnicrostrip line (c,;–1 = 9.7,
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Fig. 4. Phase of the reflection coefficient of an open rnicrostrip line

(&T,_l = 9.9, dz–1 = 0.635 mm, w = 0.6033 mm).

A. Microstrip Open-End

As a first example that illustrates the accuracy of the

method described in the last section, we consider the problem

of modeling the discontinuity presented by the open end

of a microstrip line. The following parameters are used for

the computation: the dielectric constant and thickness of the

substrate are s,;_ 1 = 9.7 and di _ 1 = 1.27 mm, respectively,

and the width of the microstrip line is w = 1.219 mm. The

effective dielectric constants are computed and compared in

Fig. 4 to the results given in [17] and with the measurement

results from [24] (with graph reading errors of less than 0.290).

In this computation, the half-wavelength long microstrip line

was divided into 21 longitudinal segments. The computed

results agree with those published in [17] to within 1‘310,and
with the measured data published in [24] to within 2!k when

the microstrip line is modeled with three transverse segments.

Unlike in the procedure described in [17], the difference be-

tween the effective dielectric constants obtained by using one

and three transverse segments is very small (less than 0.7910)in

the present method. This indicates that reasonably good results
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Fig.5. Scattering parameter Sll fortheright-angled bend; (a) magnitnde,
(b)phase(eTZ_l =2.2, d,–1=0.7874 mm, w=hz=2.4 mm).

can be obtained by using the procedure followed here without

explicitly incorporating the edge condition, which, according

to [25], requires approximately ten transverse segments for

accurate modeling.

To complete the demonstration of the numerical accuracy

of this method, the phase term of the reflection coefficient

is computed for a microstrip line of 0.6033 mm width. The

dielectric constant and thickness of the substrate are S.i– 1 =

9.9 and di_l = 0.635 mm, respectively. The numerical results

obtained with the present method are compared in Fig. 5 to the

computations presented in [17], and also to the measurements

in [26], with graph reading errors of less than 0.2’ZO. For

numerical computations, the half-wavelength long microstrip

line is again divided into 21 longitudinal segments. The results

obtained by using only one transverse segment are seen to

compare very favorably with the measurements in [17], as

well as with the computed results given in [26].

B. Microstrip Line With Right Angle Bend

In the next example, we consider a microstrip discontinuity

problem, viz., a right-angled bend. The dielectric constant of

g 0.2
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........................................
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k
o

%
s -0.2 as

.= .:
Q -- Measured [26] ~

$! -0.4 — Touchstone ~. .!..

.

[ ———.———Present method ~ I

p)l, !l(i(li, ll~llll:,
-0.6

o 2 8 10
Fre$lency (~Hz)

(a)

o I I

-25/I/ I I I
‘-i

o 2 4 6 8 10
Frequency (GHz)

(b)

Fig. 6. Scattering parameter S21 for ~he right-angled bend; (a) magnitnde,

(b) phase (e,,-1 = 2.2, d,–1 = 0.7874 mm, w = hz = 2.4 mm).

the medium and the thickness of the substrate are chosen ~

to be C.i–l = 2.2 and d,–l = 0.7874 mm, respectively.

The lengths of the segments are L1 = L2 = 55.2 mm and

their widths are w = h ‘~ 4 mm. The location of the~ = ,a.

current source is 4.8 mm from the left edge of segment-1.

The computed and measured scattering parameters for the

right-angled bend in a microstrip line are plotted in Figs. 5

and 6 as functions of frequency. The magnitude and phase

of S11 are compared with the quasi-static values and the

experimental results of Harms 1[27], and are shown in Fig. 5.

The results obtained with our method agree with the quasi-

static values, as well as with the experimental data (within the

measurement uncertainty) throughout the frequency range of

comparison. Fig. 6 shows that the magnitude of the computed

S21 agrees with the measured data to within approximately

0.08 dB, and its phase to within approximately 2 degrees

of the measured values. The scattering parameters obtained

by the present method have ripples since the characteristic

impedances of the line are calculated using an empirical

formula based on a quasi-static approach; these impedances,
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Fig. 7. Input impedance of a square microstrip antenna.

used as matched terminations at both ends, differ slightly from

the true characteristic impedance of the line.

C. Microstrip Line-Fed Patch Antenna

Next, to illustrate the versatility of our method we consider

a radiation type problem involving a microstrip patch antenna.

The input impedance of a square patch fed by a microstrip

line at the center of one edge is computed and compared with

published results. In this example, the dielectric constant and

thickness of the substrate are S.;–l = 2.55 and di–l = 1.59

mm, respectively, the width w of the feed line is 4.47 mm

its length L = 116 mm. The dimensions of the square patch

are a = b = 40.2 mm. The location of the source is 8,9
mm from the left edge of the feed line. The input impedance,

computed using the present method, is compared in Fig. 7 with

the experimental data given in Lo et al. [5], and the computed

results of Deshpande and Bailey [9]. It is evident that the

results obtained by using the present method are in excellent

(a)

b
a

Microstrip
4

feed line -r-
zo=50f2 d ts

dfl 1

1 f
9 Lts

‘T’
k b

Lfl

Fig. 8. (a) Geometry of a rnicrostrip-line-fed patch antenna with a tuning

stub, (b) top view of the geometry in (a).

agreement with the experimental, as well as other computed

results over the frequency range of interest.

As a final example, we present the results of our inves-

tigation of a microstrip-line-fed patch antenna with a tuning

stub, shown in Fig. 8. Both the feed line and the tuning stub

are assumed to have open-ended terminations. These types of

configurations are particularly useful [28] for fine-tuning the

resonant frequency of a microstrip patch antenna by changing

the length of the tuning stub, and/or its location along the

radiating edges of the microstrip patch. In addition, patch

antennas can be designed to radiate a circularly-polarized wave

by making a judicious choice for the locations of the feed line

and the tuning stub. The following parameters are used for the

example given below, which illustrates the use of the tuning

stub in microstrip patch antenna design. The dielectric constant

of the medium and thickness of the substrate are Sri– 1 = 2.62

and di _ 1 = 0.794 mm, respectively; the length Lfl of the feed

line is 35.2 mm and its width Wfl is 2.2 mm. The width of the

tuning stub is 2.2 mm and the dimensions of the square patch

are a = b = 28.6 mm. The location of the current source is

6.6 mm from the left edge of the feed line.

In the first study , the feed location is chosen at the center

of left edge of the patch and the location of the tuning

stub is moved from the top to the center of its right edge

(see Fig. 8(b)). The magnitudes of the current distribution on

the microstrip line-fed patch antenna, without and with the

tuning stub, are shown in Figs. 9 and 10, respectively. As

seen in Figs. 9(a) and 10(a), the z-components of the current

distribution remain essentially unaffected by the presence of

the tuning stub. However, Fig. 10(b) shows that the addition

of the tuning stub induces a cross-polarization (y) component
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Fig. 9. Magnitudes of the current dktribution on the microstrip line fed patch

antenna (a) Jx(.r, y), (b) Jv(.r, y). Freq. = 3.16 GHz, a = b = 28.6 mm,

Dx = Dy = 2.2 mm, ST,_l = 2.62, d,_l = 0.794 mm.

in the patch current and excites a new mode along y. This

leads us to conclude that both the (1, O) and (O, 1) modes

can be excited simultaneously using a tuning stub. It should

now be evident that we can achieve circular polarization (CP)

by adjusting the length and location of the tuning stub until

the magnitudes of the m and y-components become equal and

their relative phase shift becomes 90°. As is well known, the

impedance locus exhibits a cusp-like behavior on the Smith

Chart, as seen in Fig. 11, when the CP condition is achieved.

IV. CONCLUSION

In this paper, spatial domain closed-form Green’s functions

have been employed for the analysis of a general class of

microstrip structures. Numerical results for a uniform line, as

well the scattering parameter analysis for a microstrip line

with a right-angle bend have been found to agree well with

experimental results as well as with those published elsewhere.

The behavior of the input impedance of a microstrip-line-

fed patch antenna has been shown to agree closely with

that computed by using the MoM approach in the spectral
domain, which requires the computation of infinite integrals

and is computer intensive. The analysis of the above patch

antenna shows that the addition of a tuning stub is not only

provides a convenient way to achieve fine tuning of the

resonant frequency of the antenna, but is useful for achieving

circularly-polarized radiation from the antenna as well.

Jx (A)

4.0 d

(a)

Jy (A)

(b)

Fig. 10. Inpnt impedance of the microstrip line center fed squzue patch

antenna witha tuning stub. f,ta,t = 2.98 GHz, .fStOP = 3.30 GHz,
Df = 0.01 GHz, dts = 4.4 mm. (a) Lts = 2.2 mm, (b) Lts = 4.4 mm,

(c) Lts = 6.6 cm.

\ f(stop) —

Fig. 11. Magnitudes of the current clistribution on the microstrip line fed

patch antenna with a tuning stub (a) Jz (z, y), (b) .JU(z, y). Freq = 3.16 GHz,
a = b = 28.6 mm, Dx = Dy = 2.2 mm, C,, –l = 2.62, d,–l = 0.794
mm, Lts = 8.8 mm.

The use of the closed-form spatial domain Green’s functions

in the MoM formulation significantly reduces the computa-

tion time in comparison to that needed in the conventional
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formulation carried out in the spectral domain. For instance,

in a numerical experiment with 40 roof-top basis functions, the

CPU time for the solution of the current distribution was on the

order of 1 min. on a DEC station 5100 when the closed-form

Green’s functions were employed, whereas 100–150 reins.

were required on the same workstation to solve the problem

using the spectral domain moment method in conjunction with

an acceleration technique.

We conclude that the method presented in this paper can

be used to accurately solve for the current distributions on a

variety of microstrip line geometries in less computation time

than many other MoM approaches.
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